

AXISYMMETRIC DYNAMIC RESPONSE OF A CIRCULAR PLATE ON AN ELASTIC FOUNDATION

A. K. GHOSH

Reactor Safety Division, Bhabha Atomic Research Centre, Mumbai 400085, India (Received 2 July 1996, and in final form 10 February 1997)

1. INTRODUCTION

Circular plates on elastic foundations are used in footings and raft foundations of various structures. In addition, tubesheets used in various shell-and-tube type heat exchangers, can be modelled as circular plates on elastic foundations.

The static response of a circular plate on an elastic foundation is well studied [1–3, for example]. The axisymmetric dynamic response of a circular plate has been analytically studied [4, for example]. Free vibration of circular footing has been studied by some authors [5, for example].

This paper presents an analysis and numerical results for the axisymmetric free and forced vibration of a circular plate on an elastic foundation.

2. THEORY

The axisymmetric equilibrium of a circular plate represented by Poisson-Kirchhoff plate theory and resting on a Winkler medium [1] is represented in terms of the non-dimensional deflection, y and radius x as

$$D\left[\frac{\partial^4 y}{\partial x^4} + \frac{2}{x}\frac{\partial^3 y}{\partial x^3} - \frac{1}{x}\frac{\partial^2 y}{\partial x^2} + \frac{1}{x}\frac{\partial y}{\partial x}\right] + ka^4 y + \rho ha^4 \frac{\partial^2 y}{\partial t^2} = pa^3.$$
(1)

where

$$y = w/a$$
 and $x = r/a$

where w is the deflection of the plate of radius a, thickness h, density ρ and flexural rigidity D. p is the uniformly distributed load per unit area of the plate. k is the spring constant for the foundation medium. The boundary conditions are:

For clamped edge,

$$y = 0$$
 at $x = 1$, and $\partial y / \partial x = 0$ at $x = 1$. (2, 3)

For a simply supported edge,

$$y = 0$$
 at $x = 1$, $\frac{\partial^2 y}{\partial x^2} + (v/x) \frac{\partial y}{\partial x}$ at $x = 1$. (4, 5)

where v is Poisson's ratio of the plate material. The solution is required to be bounded everywhere.

0022-460X/97/310112 + 09 \$25.00/0/sv970989

2.1. Solution for free vibration

A solution is sought in the following form:

 $y = R(x) e^{i\omega t};$ $i = \sqrt{-1}.$

Then equation (1) with the RHS set equal to zero yields

$$(\nabla^2 + \alpha^2)(\nabla^2 - \alpha^2)R = 0.$$
(6)

where,

$$\alpha^{4} = (1/D)(\rho h a^{4} \omega^{2} - k a^{4})$$
(7)

The frequency ω is non-dimensionalised as

$$\beta^4 = \rho h a^4 \omega^2 / D \tag{8}$$

From equation (7)

$$\beta^4 = \alpha^4 + K; \qquad K = ka^4/D, \tag{9}$$

The solution to equation (6) is

$$R = A \mathbf{J}_0(\alpha x) + B \mathbf{Y}_0(\alpha x) + C \mathbf{I}_0(\alpha x) + D \mathbf{K}_0(\alpha x)$$
(10)

where the constants A, B, C and D are to be determined from the boundary conditions. J_0 and Y_0 are the zeroth order Bessel functions of the first and the second kind respectively. I_0 and K_0 are the zeroth order modified Bessel functions. From the boundedness of the solution at x = 0 it is required that B = 0 and D = 0, and hence the solution reduces to

$$R = A \mathbf{J}_0(\alpha x) + C \mathbf{I}_0(\alpha x).$$

For both simply supported and clamped boundaries y = 0, hence R = 0 at x = 1. Without any loss of generality,

$$R = I_0(\alpha)J_0(\alpha x) - J_0(\alpha)I_0(\alpha x).$$
(11)

2.1.1. Frequency equation for clamped edge. $\partial y/\partial x = 0$ i.e., dR/dx = 0 at x = 1. From equations (11), the characteristic equation is

$$J_0(\alpha)I_1(\alpha) + I_0(\alpha)J_1(\alpha) = 0.$$
⁽¹²⁾

From the solutions, α_i 's of equation (12), the non-dimensional natural frequencies β_i 's are obtained by using equation (9).

2.1.2. Frequency equation for simply supported edge. From equation (5) it follows $d^2R/dx^2 + (v/x) dR/dx = 0$ at x = 1. From equation (11), the characteristic equation for simply supported edge is obtained as

$$2\alpha I_0(\alpha) J_0(\alpha) + (\nu - 1) [I_0(\alpha) J_1(\alpha) + J_0(\alpha) I_1(\alpha)] = 0.$$
(13)

The usual recurrence relationships [6] have been used in deriving equations (12) and (13).

2.2. Analysis of forced vibration

A solution of the forced vibration equation (1) is sought in the form

$$y(x, t) = \sum R_j(x)g_j(t)$$
(14)

LETTERS TO THE EDITOR

where $R_j(x)$ is the natural mode shape of the *j*th mode. Thus it is evident that the boundary conditions are automatically satisfied by equation (14). The unknown function of time $g_j(t)$ is to be determined. Substituting equation (14) in equation (1) one obtains by making use of equations (6) and (7),

$$\sum_{j} \left(\frac{\mathrm{d}^2 g_j}{\mathrm{d}t^2} + \omega^2 g_j \right) R_j = \frac{p}{\rho ha}$$
(15)

Each side of equation (15) is multiplied by $xR_i(x)$ and integrated between the limits 0 and 1.

$$\int_{0}^{1} \sum_{j} \left(\frac{\mathrm{d}^{2} g_{j}}{\mathrm{d}t^{2}} + \omega^{2} g_{j} \right) x R_{i} R_{j} \, \mathrm{d}x = \int_{0}^{1} \frac{p}{\rho h a} \, x R_{i} \, \mathrm{d}x, \qquad N_{ij} = \int_{0}^{1} x R_{i} R_{j} \, \mathrm{d}x \tag{16}$$

 N_{ij} has been evaluated making use of the orthogonality of the natural modes [4, 6]. For the plate with a clamped edge,

$$N_{ij} = \left\{ \frac{1}{2} [I_0^2(\alpha_i) J_1^2(\alpha_i) - J_0^2(\alpha_i) I_1^2(\alpha_i)] + I_0^2(\alpha_i) J_0^2(\alpha_i) \right\} \delta_{ij}.$$
 (17)

For simply supported edge,

$$N_{ij} = \left\{ \frac{1}{2} [\mathbf{I}_0^2(\alpha_i) \mathbf{J}_1^2(\alpha_i) - \mathbf{J}_0^2(\alpha_i) \mathbf{I}_1^2(\alpha_i)] - [(1+\nu)/(1-\nu) \mathbf{I}_0^2(\alpha_i) \mathbf{J}_0^2(\alpha_i) \right\} \delta_{ij},$$
(18)

where δ_{ij} is the Kronecker delta. Hence equation (16) reduces to

$$\frac{d^2 g_j}{dt^2} + \omega_j^2 g_j = \frac{1}{N_{jj}\rho ah} \int_0^1 p(x,t) x R_j(x) \, \mathrm{d}x.$$
(19)

For uniform pressure, $p = p_0 f_1(t)$ the integral on the right side of equation (19) is

$$= p_0 f_2(\alpha_j) f_1(t),$$
 (20)

$$f_2(\alpha_j) = [\mathbf{I}_0(\alpha_j)\mathbf{J}_1(\alpha_j) - \mathbf{J}_0(\alpha_j)\mathbf{I}_1(\alpha_j)]/\alpha_j.$$
(21)

So equation (19) is rewritten as

$$d^{2}g_{j}/dt^{2} + \omega_{j}^{2}g_{j} = (p_{0}f_{2}(\alpha_{j})/N_{jj}\rho ah)f_{1}(t).$$
(22)

For zero initial conditions, the solution to equation (22) is

$$g_j = \frac{p_0 f_2(\alpha_j)}{\omega_j N_{jj} \rho ah} \int_0^t f_1(t-\tau) \sin(\omega_j \tau) d\tau.$$
(23)

Non-dimensional time θ is defined as

$$\theta = \omega_1 t$$
 and $\gamma_j = \omega_j / \omega_1 = \beta_j^2 / \beta_1^2$. (24, 25)

For step loading i.e., $f_1(t) = 1$,

$$g_j = (p_0 a^3 / D) (f_2(\alpha_j) / \beta_j^4 N_{jj}) [1 - \cos(\gamma_j \theta)].$$
(26)

For sinusoidal loading,

$$f_1(t) = \sin(\Omega t) = \sin(f\omega_1 t) = \sin(f\theta); \qquad (\Omega = f\omega_1), \tag{27}$$

$$g_{j} = \frac{p_{0}a^{3}f_{2}(\alpha_{j})}{D\beta_{j}^{4}N_{jj}(f^{2}/\gamma_{j}^{2}-1)} \left[\frac{f}{\gamma_{j}}\sin\left(\gamma_{j}\theta\right) - \sin\left(f\theta\right)\right]; \qquad (\Omega \neq \omega_{j}),$$
(28)

$$g_j = \frac{p_0 a^3 f_2(\alpha_j)}{D2 f \beta_1^2 \beta_j^2 N_{jj}} [\sin (f\theta) - f\theta \sin (f\theta)]; \qquad (\Omega = \omega_j).$$
⁽²⁹⁾

From equations (26)–(29) it is seen that g_j can be written in the form $g_j = (p_0 a^3/D) f_3(\alpha_j) f_0(\theta)$, where $f_3(\alpha_j)$ and $f_0(\theta)$ depend on the type of loading. Pressure loading having other types of dependence on time may be represented by a sine series and the above results can be used. The deflection and the moments are normalised as follows.

$$w_{n} = w/(p_{0}a^{4}/D) = ya/(p_{0}a^{4}/D)$$

= $\sum_{j} [I_{0}(\alpha_{j})J_{0}(\alpha_{j}x) - J_{0}(\alpha_{j})I_{0}(\alpha_{j}x)]f_{3}(\alpha_{j})f_{0}(\theta),$ (30)

$$M_r = -D\left[\sum_j \frac{\mathrm{d}^2 R_j}{\mathrm{d}x^2} + \frac{v}{x} \frac{\mathrm{d}R_j}{\mathrm{d}x}\right] g_j \left[a, \right]$$

$$M_{r,n} = M_r/p_0 a^2 = \sum_j \left(\frac{\mathrm{d}^2 R_j}{\mathrm{d}x^2} + \frac{v}{x}\frac{\mathrm{d}R_j}{\mathrm{d}x}\right) f_3(\alpha_j) f_0(\theta),\tag{31}$$

$$M_{t,n} = \frac{M_t}{p_0 a^2} = \sum_j \left(\dot{v} \, \frac{\mathrm{d}^2 R_j}{\mathrm{d}x^2} + \frac{1}{x} \, \frac{\mathrm{d}R_j}{\mathrm{d}x} \right) f_3(\alpha_j) f_0(\theta).$$
(32)

At x = 0, $M_r = M_t$.

3. NUMERICAL RESULTS

3.1. Vibration of a plate with clamped edge

3.1.1. Free vibration. Equation (12) is solved for the eigenvalues α 's from which the non-dimensional natural frequencies β 's are evaluated by equation (9). In this case, β is found to be dependent only on the non-dimensional parameter $K = ka^4/D$. The values of β for the first ten modes are presented in Table 1 for five different values of K. It is seen that β increases with K. This is due to the increase in the overall stiffness of the plate–foundation system. The solution of the forced vibration equation converges quite rapidly. The results for K = 0 i.e., no foundation are in agreement with those presented in [4]. The analytical results are a special case of those presented in [5].

3.1.2. Forced vibration. As a typical transient response to a uniformly distributed pressure varying as a step function of time the normalised radial moment at the centre

115

			K		
Mode no.	0.000E + 00	0.100E + 02	0.500E + 02	0.100E + 03	0.200E + 03
1	0.319E + 01	0.327E + 01	0.352E + 01	0.378E + 01	0.418E + 01
2	0.630E + 01	0.631E + 01	0.635E + 01	0.640E + 01	0.650E + 01
3	0.944E + 01	0.944E + 01	0.945E + 01	0.947E + 01	0.950E + 01
4	0.126E + 02				
5	0.157E + 02				
6	0.189E + 02				
7	0.220E + 02				
8	0.251E + 02				
9	0.283E + 02				
10	0.314E + 02				

TABLE 1 Non-dimensional natural frequencies (β) of a plate with clamped edge

is presented in Figure 1 for the case K = 0 and v = 0.2. It is seen that the results oscillate about the static solution, $M_{r,n} = (1 + v)/16 = 0.075$ [1]. This oscillation being undamped, the maximum amplitude remains unaltered. It is seen that the maximum dynamic radial moment is a significantly amplified version of the corresponding static value.

The maximum values of the normalised deflection and radial and the tangential moments due to the step loading for various values of K and v = 0.2 are presented in Table 2.

The response to sinusoidal loading is studied next. It is found that the peak deflection and the peak moments depend on the frequency ratio f (see equation (27)) and K. The peak moments depend on Poisson's ratio v as well. The peak deflection and the peak

Figure 1. Variation of $M_{r,n}$ with θ ; clamped edge; x = 0; step loading; K = 0; v = 0.20.

LETTERS TO THE EDITOR

Normalised values of peak deflection and moments at the centre of the plate for step function loading (clamped edge)

	v = 0.20					
K	0.000E + 00	0.100E + 02	0.500E + 02	0.100E + 03	0.200E + 03	
$\stackrel{{\mathcal W}_n}{M_{r,n}}$	$0.329E - 01 \\ 0.193E + 00$	$0.300E - 01 \\ 0.183E + 00$	$0.222E - 01 \\ 0.132E + 00$	$0.168E - 01 \\ 0.105E + 00$	0.113E - 01 0.766E - 01	

tangential moment occur at the centre. However, the location of the peak radial moment varies with f and K.

The magnitudes of peak w_n and $M_{r,n}$ respectively as a function of f are presented in Table 3 for various values of K. The peak deflection is independent of the value of v. The results for the moments are presented for v = 0.2. Figure 2 shows the peak radial moment as a function of f for K = 50 and v = 0.2.

3.2. Vibration of a plate with simply supported edge

3.2.1. Free vibration. Equation (13) is solved for the eigenvalues α 's from which the

		TABLE 3			
Peak amplitu	ıde under	sinusoidal	loading	(clamped	edge)

			$\stackrel{K}{\scriptstyle \land}$		
f	0	10	50	100	200
0.200E + 00	0.171E - 01	0.156E - 01	0.114E - 01	0.848E - 02	0.557E - 02
0.400E + 00	0.259E - 01	0.236E - 01	0.173E - 01	0.129E - 01	0.847E - 02
0.600E + 00	0.401E - 01	0.366E - 01	0.270E - 01	0.202E - 01	0.135E - 01
0.800E + 00	0.798E - 01	0.727E - 01	0.537E - 01	0.405E - 01	0.267E - 01
0.900E + 00	0.162E + 00	0.148E + 00	0.109E + 00	0.825E - 01	0.550E - 01
0.950E + 00	0.325E + 00	0.297E + 00	0.219E + 00	0.165E + 00	0.111E + 00
0.105E + 01	0.327E + 00	0.298E + 00	0.221E + 00	0.167E + 00	0.112E + 00
0.110E + 00	0.164E + 00	0.149E + 00	0.111E + 00	0.839E - 01	0.562E - 01
0.120E + 01	0.818E - 01	0.747E - 01	0.555E - 01	0.424E - 01	0.285E - 01
0.150E + 01	0.322E - 01	0.295E - 01	0.221E - 01	0.172E - 01	0.124E - 01
(B) Normalised	radial moment (M	$(v_{r,n}) (v = 0.20)$			
0.200E + 00	0.131E + 00	0.121E + 00	0.953E - 01	0.771E - 01	0.583E - 01
0.400E + 00	0.189E + 00	0.175E + 00	0.136E + 00	0.108E + 00	0.801E - 01
0.600E + 00	0.279E + 00	0.257E + 00	0.197E + 00	0.155E + 00	0.113E + 00
0.800E + 00	0.524E + 00	0.481E + 00	0.364E + 00	0.280E + 00	0.198E + 00
0.900E + 00	0.103E + 01	0.943E + 00	0.708E + 00	0.541E + 00	0.367E + 00
0.950E + 00	0.204E + 01	0.187E + 01	0.139E + 01	0.106E + 01	0.716E + 00
0.105E + 01	0.200E + 01	0.182E + 01	0.133E + 01	0.101E + 01	0.662E + 00
0.110E + 00	0.982E + 00	0.897E + 00	0.657E + 00	0.493E + 00	0.321E + 00
0.120E + 01	0.478E + 00	0.435E + 00	0.319E + 00	0.251E + 00	0.172E + 00
0.150E + 01	0.196E + 00	0.182E + 00	0.143E + 00	0.118E + 00	0.978E - 01

(A) Normalised deflection (w_n)

Figure 2. Variation of maximum $M_{r,n}$; clamped edge; K = 50; v = 0.20.

non-dimensional natural frequencies β 's are evaluated: α and β are dependent on both ν and K. Table 4 presents the non-dimensional natural frequencies for different values of ν and K. It is observed that β is practically insensitive to K beyond the first three modes.

			1	<i>J I</i>	1 9 11	
		K				
Mode no.	v	0.000E + 00	0.100E + 02	0.500E + 02	0.100E + 03	0.200E + 03
1	0.15	0.217E + 01	0.238E + 01	0.291E + 01	0.332E + 01	0.386E + 01
2		0.554E + 01	0.545E + 01	0.551E + 01	0.559E + 01	0.572E + 01
3		0.860E + 01	0.861E + 01	0.862E + 01	0.864E + 01	0.868E + 01
4		0.118E + 02				
5		0.149E + 02				
6		0.180E + 02	0.180E + 02	0.180E + 02	0.181E + 02	0.181E + 02
7		0.212E + 02				
8		0.243E + 02				
9		0.275E + 02				
10		0.306E + 02				
1	0.20	0.219E + 01	0.239E + 01	0.292E + 01	0.333E + 01	0.386E + 01
2		0.544E + 01	0.546E + 01	0.552E + 01	0.559E + 01	0.573E + 01
3		0.861E + 01	0.861E + 01	0.863E + 01	0.864E + 01	0.868E + 01
4		0.118E + 02				
1	0.25	0.220E + 01	0.241E + 01	0.293E + 01	0.333E + 01	0.387E + 01
2		0.545E + 01	0.546E + 01	0.552E + 01	0.560E + 01	0.573E + 01
3		0.861E + 01	0.861E + 01	0.863E + 01	0.865E + 01	0.869E + 01
4		0.118E + 02				

TABLE 4 Non-dimensional natural frequencies (β) of a plate with simply supported edge

LETTERS TO THE EDITOR

Κ 0.000E + 00v 0.100E + 020.500E + 020.100E + 030.200E + 030.142E + 000.981E - 010.436E - 010.259E - 010.143E - 01_ W_n 0.301E + 000.439E + 000.15 0.141E + 000.553E - 01 $M_{r,n}$ 0.872E - 010.138E + 000.958E - 010.433E - 010.257E - 010.142E - 01 W_n $M_{r,n}$ 0.200.438E + 000.309E + 000.145E + 000.894E - 010.564E - 010.142E - 010.938E - 010.256E - 010.134E + 000.429E - 01 W_n 0.25 0.458E + 000.321E + 000.153E + 000.965E - 010.602E - 01 $M_{r,n}$

Normalised values of peak deflection and moments at the centre of the plate for step function loading (simply supported edge)

Hence detailed results are presented only for v = 0.15. The results for K = 0 are in agreement with those presented in [4].

3.2.2. Forced vibration. The maximum values of the normalised deflection and radial and tangential moments due to a step loading for various values of v and K are

TABLE	6
-------	---

Peak amplitude under sinusoidal loading (simply supported edge) (A) Normalised deflection (v = 0.2)

			K		
f	0	10	50	100	200
0.200E + 00	0.736E - 01	0.509E - 01	0.225E - 01	0.131E - 01	0.685E - 02
0.400E + 00	0.111E + 00	0.767E - 01	0.342E - 01	0.200E - 01	0.106E - 01
0.600E + 00	0.171E + 00	0.119E + 00	0.531E - 01	0.309E - 01	0.170E - 01
0.800E + 00	0.338E + 00	0.235E + 00	0.105E + 00	0.620E - 01	0.340E - 01
0.900E + 00	0.684E + 00	0.476E + 00	0.214E + 00	0.127E + 00	0.696E - 01
0.950E + 00	0.137E + 01	0.955E + 00	0.430E + 00	0.255E + 00	0.140E + 00
0.105E + 01	0.137E + 01	0.957E + 00	0.432E + 00	0.256E + 00	0.142E + 00
0.110E + 01	0.687E + 00	0.478E + 00	0.216E + 00	0.128E + 00	0.716E - 01
0.120E + 01	0.341E + 00	0.238E + 00	0.108E + 00	0.647 E - 01	0.361E - 01
0.120E + 01	0.132E + 00	0.923E - 01	0.427E - 01	0.264E - 01	0.161E - 01
0.200E + 01	0.610E - 01	0.430E - 01	0.208E - 01	0.143E - 01	0.160E - 01
(B) Normalised	radial moment ($M_{r,n}) (v = 0.20)$			
0.200E + 00	0.221E + 00	0.150E + 00	0.616E - 01	0.328E - 01	0.128E - 01
0.400E + 00	0.337E + 00	0.228E + 00	0.975E - 01	0.543E - 01	0.245E - 01
0.600E + 00	0.526E + 00	0.361E + 00	0.157E + 00	0.852E - 01	0.470E - 01
0.800E + 00	0.105E + 01	0.726E + 00	0.317E + 00	0.183E + 00	0.996E - 01
0.900E + 00	0.214E + 01	0.148E + 01	0.658E + 00	0.391E + 00	0.211E + 00
0.950E + 00	0.430E + 01	0.298E + 01	0.133E + 01	0.790E + 00	0.430E + 00
0.105E + 01	0.433E + 01	0.302E + 01	0.137E + 01	0.820E + 00	0.467E + 00
0.110E + 01	0.217E + 01	0.152E + 01	0.699E + 00	0.417E + 00	0.242E + 00
0.120E + 01	0.109E + 01	0.756E + 00	0.358E + 00	0.221E + 00	0.132E + 00
0.150E + 01	0.432E + 00	0.308E + 00	0.156E + 00	0.110E + 00	0.876E - 01
0.200E + 01	0.211E + 00	0.157E + 00	0.954E - 01	0.923E - 01	0.197E + 00

Figure 3. Variation of peak $M_{r,n}$ with f; simply supported edge; K = 50; v = 0.20.

presented in Table 5. Unlike the case of the clamped edge, the deflection is also dependent on v.

The values of normalised peak deflection and moment at x = 0 for sinusoidal loading are presented in Table 6 for various values of K. Expectedly, the peak responses reduce with increase in K. Figure 3 shows the peak $M_{r,n}$ as a function of f for K = 50 and v = 0.2.

4. CONCLUSIONS

Analytical results have been presented for the free and forced vibration of a circular plate on an elastic foundation. The various numerical results presented should be useful for practical applications.

REFERENCES

- 1. S. P. TIMOSHENKO and S. WOINOWSKY-KRIEGER 1959 *Theory of Plates and Shells*. New York: McGraw Hill Book Company.
- 2. H. REISMANN 1954 American Society of Mechanical Engineers, Journal of Applied Mechanics 21, 45–51. Bending of circular and ring shaped plates on an elastic foundation.
- 3. K. KAMAL and S. DURVASULA 1983 *Transactions of the American Society of Civil Engineers, Journal of Engineering Mechanics* 109, 1293–1298. Bending of circular plate on elastic foundation.
- 4. R. S. WEINER 1965 Transactions of the American Society of Mechanical Engineers, Journal of Engineering Mechanics 32, 893–898. Forced axisymmetric motions of circular elastic plates.
- 5. S. M. SARGAND 1987 Journal of Sound and Vibration 118, 141–149. Free vibration of circular footing on elastic foundation.
- 6. G. N. WATSON 1952 A Treatise on the Theory of Bessel Functions. Cambridge: Cambridge University Press.